111

Towards Compositional
Predicate Transformer Semantics
for Concurrent Programs

Eike Best!
Institut fiir Informatik
Universitat Hildesheim

D - 3200 Hildesheim

Written on the occasion of the 25th anniversary of Jaco de Bakker’s
involvement with the Mathematisch Centrum - Centrum voor Wiskunde en
Informatica, Amsterdam.

Abstract

For a simple concurrent programming language, a slight modifi-
cation of the formal framework exposed in [2] is shown to yield a
compositional predicate transformer semantics which is consistent
with denotational semantics.

1 Introduction

The seminal paper [2] exposes a denotational framework for the definition
of the semantics of concurrent programs. We shall explore an idea, due to
Jaco de Bakker, to modify this environment to accommodate predicate trans-
former semantics. For a simple concurrent programming language, we shall
show that this modification leads to a generalisation of the well known consis-
tency between relational (‘forward’) and predicate transformer (‘backward’)
semantics of sequential programs [1].

In section 2 we briefly recall the necessary definitions for sequential programs.
Section 3 contains the definitions of forward and backward semantics for
simple concurrent programs, along with an example. Section 4 states (and
partly proves) the consistency between them. Section 5 contains conclusions.

IThis work was done while the author was with the Gesellschaft fiir Mathematik und
Datenverarbeitung, D-5205 Sankt Augustin.

112

2 Sequential programs

Let a be a sequential (possibly nondeterministic) program and let S be the
state space of a. The relational semantics r(a) C S x S defines (s,5’) € r(a)
iff starting with the state s, there is an execution of a terminating in the state
§'. The predicate transformer? semantics w(a):25 — 25 defines w(e,X) =Y
(for X,Y C S)iff Y is the set of initial states s such that starting with s,
every terminating execution of a leads to a final state in X.

Between r(a) and w(a) there is the following relationship [1]:

Vse SYX C S:sew(a,X) < r(a,s) C X. (1)

(Informal justification: s € w(a, X) iff every terminating execution leads into
X iff r(a,s) C X.)

For the purpose of explaining our example below, we need to define the
relation r and the function w for simple sequential programs of the form
B — 1 :=¢, that is, assignments guarded by Boolean expressions. We define
(s,8') € 7(B — z := e) iff B(s) = true and s’ equals s;, where s; is the
same state as s except that the value of z in s¢ equals e (as evaluated in s).
Moreover, we define Y = w(B — z :=¢,X) iff for all s € Y, B(s) = true
implies that s¢ € X. Unguarded assignments z := e are a special case (con-
sider true — z := ¢). Plain Boolean expressions B are special cases as well
(consider B — skip).

3 Simple concurrent programs

Let ¢ denote a shared variable program containing atomic actions as primitives
and choice, sequence and parallel compasition as combinators. We assume
the following syntax for c:

c u= a|cale | aje | ale,

where a denotes an atomic action of the general form (B — z :=¢e). Let S
denote the state space of c. For an atomic action a, the relation r(a) C §x S
and the function w(a):25 — 25 are defined as in section 2.

As in (2], an object representing the denotation of ¢ will be defined as an
element of a domain P satisfying the following domain equation:

P o} U 2SO)

where 2. is the set of all closed subsets (see [2] for the definition of closedness).

?Instead of predicates over S we shall consider subsets of S, i.e., elements of 25,

113

Remark:

In [2], the following domain equation has been used instead of equa-
tion (2):
Po= {n}u(s—257). (3)

However objects p € P can be translated equivalently into objects p’ €
P’ and vice versa.

To translate p into p’, pe is translated into pj by definition. Let p =
{(r1,21)s -+ -+ (Tm:Pm)} € P with p; € P; then p is translated into p’' =
As.X with (s;,p}) € X iff there is a pair (;,p;) € p such that (s,s;) € r;
and p; is translated into pi.

Conversely, to translate p’ into p, pj is translated into po by definition.
Let p' = As.{(s1,P\),.--,(8a,P%)} € P’ with p} € P'. Then p' is trans-
lated into p = {(r1,p1),-.-,{rn,Pa)} € P such that r; C S x S is defined
by means of (s,s') € i <= (s',p:) € P'(5), and p] is translated into p;.
These two constructions are inverses of each other [3]. Hence objects in

P and objects in P’ can be used interchangeably. For convenience, we
shall use P.

The following will be the defining equation for the semantic domain Q of the
predicate transformer:

Q = {@}u 25:(25_’25))(‘2) (4)

Let ¢ be a concurrent program. We define its ‘forward’ denotation [¢) and
its ‘backward’ denotation (c] as follows:

[a) = {(r(a),po)} (] = {(w(a),q)}
[aalc) = [a)ule) {{(aled = (a]ule]
[ei5e0) = [e)ofea) (cries] = (ex] o{er]
[alles = [ea)ll[e2) (arllee] = (edli(e2],

where || is as defined in [2] and o is the reverse of the operation defined there
(for notational convenience).

As an example, consider the following program cg:
var r: integer;
(@=z+1)i((z=0—2:=3) 0 @£ O)) || (z:=2+2).
~ - ':, “ T —;_/
a 1

114

Then [¢p) is the following set:

[e) = p1 = {(r(a),p2),(7(d),p3)}
p2 = {(r(b1),pa), ((b2), pa), (r(d), Ps)}
ps = {(r(a),ps)}
pa = {(r(d),p0)}
ps = {(r(b1),p0), (r(b2),p0)}-

On the other hand, (o] is the following set:

(cd = @ = {(w(br),gq2), (w(b2),ge),(w(d),gs)}
a2 = {(w(a)"h)’(w(d)"k)}
qg = {(w(bl),%),(w(bz),%)}
94 = {(w(d)’QO)}
g = {(w(a),q)}

Both expressions can be viewed as labelled trees [2]; however, despite the
close symmetry in the definition, these trees are not, in general, isomorphic.

The objects [c) and {c] contain enough information for the relational se-
mantics and the predicate transformer semantics of ¢ to be easily derivable.
To this end we define two semantic functions p and ¢ with the following
functionality:

p: Px8S — 25

¢ Qx25 o 25

Let p € P and s € S. Then p(p, s) is defined recursively as follows:

p(po,8) = {s} (5)
o(p, s) U{p(p',t) | 3r C S x S:(r,p’) €p A (s,t) € T}

Let ¢ € @ and X C S. Then ¢(g, X) is defined recursively as follows:

#(g0, X) = X (6)
#g,X) = N{o(¢,Y)|Iw:2% - 25 (w,¢) € gAY =w(X)}.

The intention is that p(p, s) describes the set of final states that are reachable
from s by execution paths through p. For a final state to be included in this
set, it suffices that there is one path by which it is reachable; hence the
union quantifier in formula (5). On the other hand, ¢(g, X') describes the
intersection of all sets of initial states that are reachable by paths through
g- The intention is that this set describes the predicate transformer of X
backward through p (where p is related to ¢ as [c) is related to (c]). For an
initial state to be in it, all possible execution paths through p have to lead
into X; hence the intersection quantifier in formula (6).

115

As an example, reconsider the program ¢y with p; = [c) and ¢, = {(c]. Let s
denote the initial state £ = —1. For convenience, we will denote states z = v
simply by v (hence s denotes the state —1). We compute p(p1, —1):

p(p,—1) = U{p(p2,0),p(p3, 1)}
p(p2,0) U p(ps, 1)

p(p2,0) = p(ps,3) U p(ps,2)
p(ps,1) = p(ps,2)

p(ps,3) = p(po,5) = {5}
p(ps,2) = p(po,2) = {2}

Hence p(p1,—1) = {2,5}.
Let X denote the set of final states {2,3,4,5}. We compute ¢(q;, X):

#(q1, {2,3,4, 5}) = ¢(‘I21 S) N ¢(g2,{0,2,3,4, 5}) N ¢(gs, {0,1,2,3})
= ¢(qo, {0’ 2,3,4, 5}) N é(gs, {0’ 1,2, 3})
o(qs, {-1,1,2,3,4}) N #(g5, {—2,0, 1,2,3})
¢(Q51 S) n ¢(QS7 {01 la 273})
¢(‘I57{0a L2, 3})

o(qs, {-1, 1’27314}) #(go, {—37 -1,0,1,2}) = {—31 -1,0, 1’2}

¢(QS7 {07 112»3}) ¢(q0v {_1’0’ 1' 2}) = {—110’ l’ 2}‘
Hence ¢(q1, {2,3,4,5}) = {—1,0,1,2}, as could be expected.

&(g2, {0,2,3,4,5})
¢(an {Ov 11 2v 3})

4 Consistency

In this section we state (and partially prove) a generalisation of equation (1).
Let ¢ be a concurrent program and let S be its state space as in the previous
section. Then we claim that the following holds:

Vs € SYX CS: s€¢({c],X) <= p(lc),s) C X. (7
ths rh

In the proof of (7), we may proceed by structural induction over the syntax
of c. However, we deal only with the two casesc=a and c= ¢ 0 cs.
Case 1: ¢ = a.

lhs = s€g¢({c,X)
< s € ¢({(w(a),q)}, X) (Def. (z])
< $ € ¢(go,w(a, X)) (Def. ¢)
< se€w(aX) (Def. ¢)
ths = p([e),s) CX
< p({(r(a),po)},s) C X (Def. [c))
= (U{p(pot) | (s5,t) ET(a)}) € X (Def. p)
= (Ul{t}I(s)er(@h) € X (Def. p)
<> r(as)CX (rewriting).

116

Now the claim that lhs <= rhs follows directly from equality (1).
Case 2: c=c; Ue.

The proof is conducted in two steps. First, lhs and rhs are rewritten in a
more convenient form amenable to induction. Then, their equality is shown
using the induction hypothesis for ¢, and c2.

hs = seo({c],X)
= s € ¢({a1] U{cad, X) (Def. (c])
< sen{é(g,Y)|Jw:25 — 25
(w,q') € ({es] U{ea]) AY = w(X)} (Def. ¢)
— V¢ eQVvVY CS:[Iu:25— 2%
(w,g) € (cIAY =w(X)] = s€d(q,Y) (fori=1,2)
rhs = p([e),s) € X
<= X 2p(la)Ule)s) (Def. [c))
= X2 (U{p(p,t)|IrcSxS:
(r,p') € (Ier) Ule2)) A (s,8) € T}) (Def. p)
= VpePVteS: [IrCSxS:

(r,p') € [e:) A(s,t) €T] = p(p,t) C X (fori=1,2)
Next we prove lhs = rhs.

Consider any ¢ € Q and w:25 — 25 such that (w,q') € (ci], and define
Y = w(X). Then by lhs, we have s € ¢(¢',Y). Hence s is in the intersection
of all sets ¢(q’,Y) such that ¢ and Y have the above properties and hence,
by the definition of ¢, we have s € ¢({c;], X). By induction hypothesis,
p([c:),8) € X holds true. Hence by the definition of p, we have o(p,t) C X
wheneverp’ € P,t € Sand r C S xS are such that (r,p') € [¢;) and (s,t) € 7.
But this means that rhs holds.

The proof of ths = lhs is similar.

5 Conclusions

When [c) and (c] are viewed as labelled trees then their relationship can
be characterised by ‘tree inversion’, an inverse tree to a given tree being
determined by having the reverse edge walks, with appropriately matched
edge labels. Although tree inversion in this sense is not unique, there exists an
inductive definition for it [3]. By means of this inductive definition, it becomes
possible to derive relational semantics and predicate transformer semantics
from each other, rather than from the common underlying program.

It appears difficult to uphold the idea of tree inversion for iterative or re-
cursive concurrent programs, because trees containing infinite paths cannot

117

be inverted. Hence this author’s preferred approach is to suggest — syntac-
tic or semantic — means of guaranteeing the termination of any iterative or
recursive loops. This would lead to trees which may be infinitely broad but
are always finitely long and can be inverted, quite in contrast to the case of
sequential boundedly nondeterministic programs which lead to finitely broad
(but possibly infinitely long) trees.

Acknowledgement

The work described in this short note was directly stimulated by Jaco de
Bakker’s questions and remarks. It was done during an enjoyabie stay of the
author in Amsterdam in October 1983. At that time we were not aware of
any other work on predicate transformers for concurrent programs. In the
meantime, and independently, at least two other papers have been published
on the subject: [4] and [5].

References

(1] J.W. de Bakker: Mathematical Theory of Program Correctness. Prentice
Hall (1980).

[2] J.W. de Bakker und J. Zucker: Processes and the Denotational Seman-
tics of Concurrency. Information and Control, Vol.54, No.1/2, pp.70-120
(1982).

(3] E. Best: An FEquivalence Between Plotkin’s Term Rewrite Semantics,
Control Sequence Semantics, and the Process Semantics of de Bakker
and Zucker. BEGRUND-Memorandum No.33 (April 1984). Towards a
General Equivalence of ‘Forward’ Semantics and Predicate Transformer
Semantics for Concurrent Programs. BEGRUND-Memorandum No.34
(April 1984).

(4] T. Elrad and N. Francez: A Weakest Precondition Semantics for Com-
municating Processes. TCS 29, pp.231-250 (1984).

[5] L. Lamport: win and sin: Predicate Transformers for Concurrency. Re-
search Report No.17, Digital Equipment Corporation, Systems Research
Center (May 1987). (To appear in TOPLAS.)

